You can edit almost every page by Creating an account. Otherwise, see the FAQ.

Σώμα (άλγεβρα)

Από EverybodyWiki Bios & Wiki
Μετάβαση σε:πλοήγηση, αναζήτηση

Πρότυπο:Επιστημονικό πεδίο Σώμα (από το γαλλικό Corps) είναι ένα σύνολο (από το αγγλικό Field) αντικειμένων οποιουδήποτε είδους, μαζί με δύο δυαδικές πράξεις + και * ορισμένες στο , οι οποίες απεικονίζουν 2 στοιχεία a και b που ανήκουν στο F στα a+b και a*b, επίσης στοιχεία του F. Και ισχύουν οι εξής ιδιότητες:

  1. (υπάρχει στοιχείο 0 που ανήκει στο F), τέτοιο ώστε
  • για κάθε που ανήκει στο , και
  • (για κάθε a που ανήκει στο F υπάρχει b που ανήκει στο F τέτοιο ώστε a+b=0).
  1. Δηλαδή να ισχύει η αντιμεταθετική ιδιότητα στο F
  2. Υπάρχει αριθμός 1 που ανήκει στο F τέτοιος ώστε (i).a*1=a (ii). Και να υπάρχει, για κάθε a διάφορο του μηδενός, ένα b, τέτοιο ώστε a*b=1.

Τα γνωστά παραδείγματα σωμάτων όπως είναι προφανές από τα θεωρήματα του Σώματος είναι το και το και το σώμα των μιγαδικών αριθμών . Βεβαίως τα + και το * είναι τα γνωστά σύμβολα της πρόσθεσης και του πολλαπλασιασμού άρα δεν χρειάζονται περαιτέρω διερεύνηση. Το στοιχείο 0 είναι το ουδέτερο στοιχείο της πρόσθεσης και το 1 είναι το ουδέτερο στοιχείο του πολλαπλασιασμού. Το αντίθετο της πρόσθεσης το συμβολίζουμε με -a έτσι ώστε για κάθε a να υπάρχει -a, τέτοιο ώστε a+(-a)=0, και το αντίστροφο του πολλαπλασιασμού συμβολίζεται με , τέτοιο ώστε, για κάθε a που ανήκει στο F, να υπάρχει τέτοιο ώστε a* =1.

Εκτός από τα γνωστά παραδείγματα σωμάτων υπάρχουν και τα παραδείγματα των σωμάτων που είναι της μορφής a+b* και γενικά της μορφής αυτής που το υπόρριζο μπορεί να πάρει τις τιμές 2,3,...,ν.

Ένας δακτύλιος καλείται σώμα αν ισχύουν τα εξής :

  • Ο δακτύλιος είναι μεταθετικός.
  • Υπάρχει Μοναδιαίο Στοιχείο ώστε για κάθε
  • Για κάθε υπάρχει στοιχείο του το οποίο συμβολίζουμε με τέτοιο ώστε

Τυπικό παράδειγμα σώματος είναι το σύνολο των πραγματικών αριθμών , καθώς είναι μοναδιαίος αντιμεταθετικός δακτύλιος και κάθε μη μηδενικό στοιχείο του έχει αντίστροφο.

Υπόσωμα[επεξεργασία]

Έστω F σώμα. Ένα υποσύνολο του F, έστω Κ, ονομάζεται υπόσωμα του F αν ισχύουν τα εξης: α) το Κ είναι υποδακτύλιος του F β) για κάθε κ που ανήκει στο Κ\(0) υπάρχει κ^(-1) που ανήκει στο Κ


Script error: No such module "Portal bar".


This article "Σώμα (άλγεβρα)" is from Wikipedia. The list of its authors can be seen in its historical and/or the page Edithistory:Σώμα (άλγεβρα). Articles copied from Draft Namespace on Wikipedia could be seen on the Draft Namespace of Wikipedia and not main one.

Page kept on Wikipedia This page exists already on Wikipedia.


Read or create/edit this page in another language[επεξεργασία]