You can edit almost every page by Creating an account. Otherwise, see the FAQ.

Εξίσωση ευθείας

Από EverybodyWiki Bios & Wiki
Μετάβαση σε:πλοήγηση, αναζήτηση

Πρότυπο:Επιστημονικό πεδίο

Παράδειγμα γραφικής παράστασης εξισώσεων ευθειών.

Η εξίσωση ευθείας ή γραμμική εξίσωση είναι μία αλγεβρική εξίσωση στην οποία κάθε όρος είναι είτε σταθερός ή γινόμενο σταθερού όρου επί μίας απλής μεταβλητής (μέχρι την πρώτη δύναμή της).

Η εξίσωση της ευθείας μπορεί να έχει μία ή περισσότερες μεταβλητές. Η εξίσωση της ευθείας έχει την μορφή x=aλ+b και y=cλ+d. Απαλείφοντας τις σταθερές προκύπτει ισομορφισμός της εξίσωσης της ευθείας, ιδέα που την είχε προτείνει ο Albert Einstein και την απέδειξε ο Riemann.

Εξίσωση ευθείας δύο μεταβλητών[επεξεργασία]

Μία μορφή εξίσωσης ευθείας δύο μεταβλητών x και y είναι

όπου m και b είναι σταθερές. Η προέλευση του ονόματος "γραμμική" προέρχεται από το γεγονός ότι το σύνολο των λύσεων μιας τέτοιας εξίσωσης σχηματίζει μια ευθεία γραμμή στο επίπεδο. Στη συγκεκριμένη εξίσωση, ο συντελεστής m καθορίζει την κλίση ή κλίση της ευθείας αυτής, καθώς και ο σταθερό όρος "b" προσδιορίζει το σημείο στο οποίο η ευθεία τέμνει τον άξονα y.

Γενική Μορφή[επεξεργασία]

Ax + By + Γ = 0,

όπου A και B δεν είναι συγχρόνως ίσα με το μηδέν. Η γραφική παράσταση της εξίσωσης είναι μία ευθεία γραμμή, και κάθε ευθεία γραμμή του επιπέδου μπορεί να παρασταθεί από την παραπάνω εξίσωση της ευθείας.

Εξίσωση ευθείας που δίνεται σημείο της και ο συντελεστής διεύθυνσης[επεξεργασία]

όπου m είναι ο συντελεστής διεύθυνσης της ευθείας και (x0,y0) είναι ένα σημείο της.

Εξίσωση ευθείας που δίνονται δύο σημεία της[επεξεργασία]

όπου and είναι δύο σημεία της ευθείας με . Αυτή η μορφή είναι ισοδύναμη με την παραπάνω, καθώς ο συντελεστής διεύθυνσης m δίνεται από τη σχέση

Πολική μορφή εξίσωση ευθείας[επεξεργασία]

όπου m είναι ο συντελεστής διεύθυνσης και b ο σταθερός όρος. Όταν θ = 0 τότε δεν ορίζεται η πολική μορφή της εξίσωσης τη ευθείας. Η εξίσωση μπορεί να πάρει τη μορφή:

Ειδικές περιπτώσεις[επεξεργασία]

Αυτή η μορφή παράγεται από τη γενική μορφή της εξίσωσης της ευθείας όταν A = 0 και B = 1. Η γραφική της παράσταση είναι μια οριζόντια ευθεία (παράλληλη με τον άξονα x) που τέμνει το άξονα y στο b.

Αυτή η μορφή παράγεται από τη γενική μορφή της εξίσωσης της ευθείας όταν A = 1 και B = 0. Η γραφική της παράσταση είναι μια κατακόρυφη ευθεία (παράλληλη με τον άξονα y) που τέμνει το άξονα x στο a. Ο συντελεστής διεύθυνσης της ευθείας δεν ορίζεται.

Δείτε επίσης[επεξεργασία]

Εξωτερικοί σύνδεσμοι[επεξεργασία]

  • Algebraic Equations at EqWorld: The World of Mathematical Equations.
  • [1] Video tutorial on solving one step to multistep equations


This article "Εξίσωση ευθείας" is from Wikipedia. The list of its authors can be seen in its historical and/or the page Edithistory:Εξίσωση ευθείας. Articles copied from Draft Namespace on Wikipedia could be seen on the Draft Namespace of Wikipedia and not main one.

Page kept on Wikipedia This page exists already on Wikipedia.


Read or create/edit this page in another language[επεξεργασία]